:是一种电极重要由铅及其氧化物制成,电解液是硫酸溶液的蓄电池。铅酸电池放电状态下,正极重要成分为二氧化铅,负极重要成分为铅;充电状态下,正负极的重要成分均为硫酸铅。重要有:安全密封、泄气系统、维护简单、常规使用的寿命长、质量稳定、可靠性高;缺点在于铅的污染较大,单位体积内的包含的能量低(也就是过于笨重)。
镍系电池:镍氢电池是一种性能好的蓄电池。镍氢电池正极活性物质为Ni(OH)2(称NiO电极),负极活性物质为金属氢化物,也称储氢合金(电极称储氢电极),电解液为6mol/L氢氧化钾溶液。镍系电池优点有:单位体积内的包含的能量高、充放电速度快、重量轻、寿命长、无环境污染;缺点在于轻微记忆效应、管理问题较多、易形成单体电池隔板熔化。
锂系电池:锂离子电池,是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池,由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。随着科学技术的发展,现在锂离子电池慢慢的变成了了主流。
其重要优点有:常规使用的寿命长、储存单位体积内的包含的能量高、重量轻、适应力强;缺点在于安全性差、易爆炸、成本高、使用条件受限制。
液流电池:液流储能电池是一类适合于固定式大规模储能(蓄电)的装置,相比于目前常用的铅酸蓄电池、镍镉电池等二次蓄电池,具有功率和储能容量可独立设计(储能介质存储在电池外部)、效率高、寿命长、可深度放电、环境友好等优点,是规模储能技术的首选技术之一。液流电池优点有:布局灵活、循环寿命长、反应快次、不会出现有害的发射;缺点就是能量密度相差很大。
钠硫电池:钠硫电池,是一种以金属钠为负极、硫为正极、陶瓷管为电解质隔膜的二次电池。在一定的工作度下,钠离子透过电解质隔膜与硫之间发生的可逆反应,形成能量的释放和储存。钠离子电池优缺点:比能量高达760Wh/kg、没有自放电现象、放电效率几乎可达100%、寿命能达到10~15年;缺点就是高温350ºC熔解硫和钠。
三元锂离子电池:三元聚合物锂离子电池是指正极材料使用镍钴锰酸锂(Li(NiCoMn)O2)三元正极材料的锂离子电池,三元复合正极材料是以镍盐、钴盐、锰盐为原料,里面镍钴锰的比例能够准确的通过实际要调整,三元材料做正极的电池相关于钴酸锂离子电池安全性高,但是电压太低,用在手机上(手机截止电压一般在3.0V左右)会有明显的容量不够的感觉。三元锂离子电池优点有:循环性能好;缺点在于使用有所限制
磷酸铁锂:磷酸铁锂离子电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料重要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。磷酸铁锂优点有:安全性能的改善、寿命的改善、高温性能好、大容量、无记忆效应、重量轻、环保;缺点在于会引起微短路、单位体积内的包含的能量较低、制造成本比较高、产品一致性差、知识产权问题。
以上内容就是常见的储能电池分类,当然了储能电池还有其它的一些相关知识和如何对电池分类,为何需要对储能电池分类等知识,下面我们简单了解一下吧。
电池(Batteries)是一种能量转化与储存的装置,它通过反应,将化学能或物理能转化为电能。根据电池转化能量的不同,可以将电池分为化学电池和物理电池。
化学电池或化学电源就是将化学能转化为电能的装置。它由两种不同成分的电化学活性电极分别组成正负极,由一种能提供媒体传导作用的化学物质作为电解质,当连接在某一外部载体上时,通过转换其内部的化学能提供电能。
最主要的区别是活性物质的不同,二次电池的活性物质可逆,而一次电池的活性物质并不可逆。一次电池的自放电远小于二次电池,但内阻远比二次电池大,因此负载能力会比较低,此外,一次电池的质量比容量和体积比容量均大于一般充电电池。
镍氢电池采用Ni氧化物作为正极,储氢金属作为负极,碱液(主要为KOH)作为电解液,镍氢电池充电时:
电池常用IEC标准:镍氢电池的标准为IEC61951-2:2003;锂离子电池行业一般依据UL或者国家标准。
IEC即国际电工委员会(International Electrical Commission),是由各国电工委员会组成的世界性标准化组织,其目的是为促进世界电工电子领域的标准化。IEC标准是由国际电工委员会制定的标准。
镍氢电池的主要组成为:正极片(镍氧化物)、负极片(储氢合金)、电解液(主要为KOH)、隔膜纸、密封圈、正极帽、电池壳等。
锂离子电池的主要组成为:电池上下盖、正极片(活性物质为氧化锂钴)、隔膜(一种特殊的复合膜)、负极(活性物质为碳)、有机电解液、电池壳(分为钢壳和铝壳两种)等。
是指电池在工作时,电流流过电池里面所受到的阻力。由欧姆内阻与极化内阻两部分所组成。电池内阻大,会导致电池放电工作电压降低,放电时间缩短。内阻大小主要受电池的材料、制造工艺、电池结构等因素的影响。是衡量电池性能的一个重要参数。注:一般以充电态内阻为标准。测量电池的内阻需用专用内阻仪测量,而不能用万用表欧姆档测量。
电池的标称电压指的是在正常工作过程中反映出来的电压, 二次镍镉镍氢电池标称电压为1.2V;二次锂电池标称电压为3.6V。
开路电压是指电池在非工作状态下即电路无电流流过时,电池正负极之间的电势差。 工作电压又称端电压,是指电池在工作状态下即电路中有电流过时电池正负极之间电势差。
电池的容量有额定容量和实际容量之分。电池的额定容量是指设计与制造电池时规定或保证电池在一定的放电条件下,应该放出最低限度的电量。IEC标准规定镍镉和镍氢电池在20℃±5℃环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量,以C5表示。而对于锂离子电池,则规定在常温、恒流(1C)—恒压(4.2V)控制的充电条件下充电3 h,再以0.2C放电至2.75V时所放出的电量为其额定容量,而电池的实际容量是指电池在一定的放电条件下所放出的实际电量,主要受放电倍率和温度的影响(故严格来讲,电池容量应指明充放电条件)。电池容量的单位有Ah,mAh(1Ah=1000mAh).
当对可充电电池用大电流(如1C或以上)放电时,由于电流过大使内部扩散速率存在的“瓶颈效应”,致使电池在容量未能完全放出时已到达终点电压,再用小电流如0.2C还能继续放电,直至1.0V/支(镍镉和镍氢电池)和3.0V/支(锂电池)时所放出的容量称为残余容量。
镍氢充电电池的放电平台通常是指电池在一定的放电制度下放电时,电池的工作电压比较平稳的电压范围,其数值与放电电流有关,电流越大,其数值就越低。锂离子电池的放电平台一般是恒压充到电压为4.2V且电流小于0.01C时停充电,然后搁置10分钟,在任何们率的放电电流下下放电至3.6V时的放电时间。是衡量电池好坏的重要标准。
02)电池尺寸资料:包括圆形电池的直径、高度、方型电池的高度、宽度、厚度、 数值之间用斜杠隔开,单位:mm
05)电池连接片表示:CF代表无连接片,HH表示电池拉状串联连接片用的连接片, HB表示电池带并排串联连接用连接片。
KRMT33/62HH表示镍镉电池,放电倍率在0.5C-3.5之间,高温系列单体电池(无连接片),直径33mm,高度为62mm。
01)电池标识组成:3个字母,后跟5个数字(圆柱形)或6个(方形)数字。
02)第一个字母:表示电池的负极材料。I—表示有内置电池的锂离子;L—表示锂金属电极或锂合金电极。
03)第二个字母:表示电池的正极材料。C—基于钴的电极;N—基于镍的电极;M—基于锰的电极;V—基于钒的电极。
04)第三个字母:表示电池的形状。R—表示圆柱形电池;L—表示方形电池。
05)数字:圆柱形电池:5个数字分别表示电池的直径和高度。直径的单位为毫米,高度的单位为十分之一毫米。直径或高度任一尺寸大于或等于100mm时,两个尺寸之间应加一条斜线个数字分别表示电池的厚度、宽度和高度,单位毫米。三个尺寸任一个大于或等于100mm时,尺寸之间应加斜线;三个尺寸中若有任一小于1mm,则在此尺寸前加字母“t”,此尺寸单位为十分之一毫米。
例如:ICR18650表示一个圆柱形二次锂离子电池,正极材料为钴,其直径约为 18mm,高约为65mm。
ICP083448表示一个方形二次锂离子电池,正极材料为钴,其厚度约为8mm,宽度约为 34mm,高约为48mm。
ICP08/34/150表示一个方形二次锂离子电池,正极材料为钴,其厚度约为8mm,宽度约为 34mm,高约为150mm。
ICPt73448表示一个方形二次锂离子电池,正极材料为钴,其厚度约为0.7mm,宽度约为 34mm,高约为48mm。
主要包括电压、内阻、容量、单位体积内的包含的能量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、抵抗腐蚀能力等。
02)恒压充电:充电过程中充电电源两端保持一恒定值,电路中的电流随电池电压升高而逐渐减小;
03)恒流恒压充电:电池首先以恒流充电(CC),当电池电压升高至一定值时,电压保持不变(CV),电路中电流降至很小,最终趋于0。
恒流恒压充电:电池首先以恒流充电(CC),当电池电压升高至一定值时,电压保持不变(CV),电路中电流降至很小,最终趋于0。
IEC国际标准规定镍氢电池的标准充放电为:首先将电池以0.2C放电至1.0V/支,然后以0.1C充电16小时,搁置1小时后,以0.2C放至1.0V/支,即为对电池标准充放电。
脉冲充电一般都会采用充与放的方法,即充5秒钟,就放1秒钟,这样充电过程产生的氧气在放电脉冲下将大部分被还原成电解液。不仅限制了内部电解液的气化量,而且对那些已严重极化的旧电池,在使用本充电方法充放电5-10次后,会逐渐恢复或接近原有容量。
涓流充电是用来弥补电池在充满电后由于自放电而造成的容量损失。一般都会采用脉冲电流充电来实现上述目的。
充电效率是指电池在充电过程中所消耗的电能转化成电池所能储蓄的化学能程度的量度。主要受电池工艺及电池的工作环境和温度影响,一般环境和温度越高,则充电效率要低。
放电效率是指在一定的放电条件下放电至终点电压所放出的实际电量与额定容量之比,主要受放电倍率,环境和温度,内阻等的因素影响,正常的情况下,放电倍率越高,则放电效率越低。温度越低,放电效率越低。
的输出功率?电池的输出功率指在单位时间里输出能量数的能力。它是根据放电电流I和放电电压来计算的,P=U*I,单位为瓦特。
电池的内阻越小,输出功率越高,电池的内阻应小于用电器的内阻,否则电池本身消耗的功率还要大于用电器消耗的功率,这是不经济的,而且可能损坏电池。
自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺、材料、储存条件的影响。自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏,无法使用。
电池充满电开路搁置一段时间后,某些特定的程度的自放电属于正常现象。IEC标准规定镍氢电池充满电后在温度为20℃±5℃,湿度为(65±20)%条件下开路搁置28天,0.2C放电容量达到初始容量的60%。
锂电池的自放电测试为:一般都会采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至3.0V,恒流恒压1C充电至4.2V,截止电流:10mA,搁置15分钟后,以1C放电至3.0V测其放电容量C1,再将电池恒流恒压1C充电至4.2V,截止电流:10mA,搁置24小时后测1C容量C2,C2/C1*100%应大于99%。
充电态内阻指电池100%充满电时的内阻;放电态内阻指电池充分放电后的内阻。
一般说来,放电态内阻不太稳定,且偏大,充电态内阻较小,阻值也较为稳定。在电池的使用的过程中,只有充电态内阻具有实际意义,在电池使用的后期,由于电解液的枯竭以及内部化学物质活性的降低,电池内阻会有不同程度的升高。
IEC规定镍氢电池的标准耐过充测试为:将电池以0.2C放电至1.0V/支,以0.1C连续充电48小时,电池应无变形、漏液现象,且过充电后其0.2C放电至1.0V的时间应大于5小时。
04)0.1C充电16小时,搁置1小时,0.2C放电至1.0V(第50个循环)。对镍氢电池,重复1-4共400个循环后,其0.2C放电时间应大于3小时;对镍镉电池重复1-4共500个循环,其0.2C放电时间应大于3小时。
指电池的内部气压,是密封电池在充放电过程中产生的气体所致,主要受电池材料、制造工艺、电池结构等因素影响。其产生问题大多是由于电池里面水分及有机溶液分解产生的气体于电池内聚集所致。一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有一定的概率会升高:
产生的氧气与负极上析出的氢气反应生成水 2H2 + O2 → 2H2O ②
如果反应②的速度低于反应①的速度,产生的氧气来不及被消耗掉,就会造成电池内压升高。
电池以0.2C放至1.0V后,以0.1C充电16小时,在温度为20℃±5℃,湿度为65%±20%条件下,储存28天后,再以0.2C放电至1.0V,而镍氢电池应大于3小时。
国家标准规定锂电池的标准荷电保持测试为:(IEC无有关标准)电池以0.2C放至3.0/支,后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20℃±5℃下,储存28天后,再以0.2C放电至2.75V,计算放电容量,再与电池标称容量相比,应不小于初始容量的85%。
将充满电的电池在防爆箱内用一根内阻≤100mΩ导线连接正负极短路,电池不应爆炸或起火。
电池充满电后,将其置于定温度、湿度条件下储存若干天,贮存过程中观察无有漏液现象。
将电池1C恒流恒压充电到4.2V,截止电流10mA,然后放入(40±2)℃,相对湿度为90%-95%的恒温恒湿箱中搁置48h后,将电池取出在(20±5)℃的条件下搁置2h,观测电池外观应该无异常,再以1C恒流放电到2.75V,然后在(20±5)℃的条件下,进行1C充电、1C放电循环,直至放电容量不少于初始容量的85% ,但循环次数不多于3次。
将电池充满电后放进烘箱,以5℃/min的速度从室温开始升温,烘箱温度达130℃时保持30分钟,电池不应爆炸或起火。
此4步即完成一个循环,经过此27个循环实验后,电池应该无漏液,爬碱、生锈或其它不正常的情况出现。
将电池或者电池组充满电后三次从1m高处跌落至混凝土(或者水泥)地面上,以此获得随机方向的冲击。
电池以0.2C放电至1.0V后,0.1C充电16小时,搁置24小时后按下述条件振动:
使电池在10HZ-55HZ之间震动,每分钟以1HZ的振动速率递增或递减。
电池电压变化应在±0.02V之间,内阻变化在±5mΩ以内。(振动时间在90min)
电池以0.2C放电至3.0V后,1C充电恒流恒压充电到4.2V,截止电流10mA ,搁置24小时后按下述条件振动:
以振动频率在5分钟内由10 Hz 到 60 Hz 再到 10 Hz为一循环,振幅为0.06英寸进行振动实验。电池在三轴方向上振动,每轴振动半小时 。
电池充满电后,将一个硬质棒横放于电池上,用一个20磅的重物从一定高度掉下来砸在硬质棒上,电池不应爆炸、不起火。
电池充满电后,用一定直径的钉子穿过电池的中心,并把钉子留在电池内,电池不应爆炸、起火。
将充满电的电池置于一个带有特殊防护罩的加热装置上进行火烧,无碎片穿出防护罩。
已通过了ISO9001:2000质量体系认证和ISO14001:2004环保体系认证;产品获欧盟CE认证和北美UL认证,通过了SGS环保测试,并已取得Ovonic的专利许可;同时公司的产品已由PICC在全世界承保。
02)电器和电池接触件应清洁,必要时用湿布擦净,待干燥后按极性标示装入;
03)新旧电池不要混用,同一种型号但不一样的种类的电池也不能混用,以免降低使用效能;
09)无成人监护时,勿让儿童更换电池,小型电池应放在儿童不能拿到的地方;
目前镍镉,镍氢,锂离子充电电池大量应用于各种便携式用电设备(如笔记本电脑,摄像机和移动电话等到)中,每种充电电池都具自已独特的化学性质。镍镉和镍氢电池之间主要差别在于:镍氢电池单位体积内的包含的能量比较高。与相同型号电池对比,镍氢电池容量是镍镉电池的二倍。这在某种程度上预示着在不为用电设备增加额外重量时,使用镍氢电池能大大地延长设备上班时间。镍氢电池另一优点是;A大幅度减少了处镉电池中存在的:“记忆效应”问题,从而使得镍氢电池可更方便地使用。镍氢电池比镍镉电池更环保,因为它内部没有有毒重金属元素。Li-ion也已经快速成为便携设备的标准电源,Li-ion能提供和镍氢电池一样的能量,但在重量方面则可减少大约35%,这对于旬摄像机和笔记本电脑之类的用电设备来说是至关重要的。Li-ion绝对没“记忆效应”和不含有毒物质的优点也是使它成为标准电源的重要因素。
镍氢电池的放电效率在低温会有显著的降低,一般充电效率会随温度的升高而升高,但当温度升到45℃以上,高温下充电电池材料的性能会退化,电池的循环寿命也将大大缩短。
倍率放电是指放电时放电电流(A)与额定容量(A•h)的倍率关系表示。 小时率放电是指按一定输出电流放完额定容量所需的小时数。
由于数码相机中的电池在气温过低的情况下,活性物质的活跃度大幅度的降低,从而可能没办法提供相机的正常工作电流,因此在气温较低地区户外拍摄,尤其要注意相机或电池的保暖。
如果将不同容量或新旧电池混在一起使用,有可能出现漏液,零电压等现象,这是由于充电过程中,容量差异导致充电时有些电池被过充,有些电池未充满电,放电时有容量高的电池未放完电,而容量低的则被过放,如此恶性循环,电池受损而漏液或低(零)电压。
电池外两端连接在任何导体上都会造成外部短路,电池类型不同,短路有可能带来不同严重程度的后果。如:电解液温度上升、内部气压升高等。气压值如果超过电池盖帽耐压值,电池将漏液。这种情况严重破损毁坏电池。如果安全阀失效,甚至会引起爆炸。因此切勿将电池外部短路。
选择充电器时,最好使用具备正确终止充电装置(例如防过充时间装置、负电压差(-dV)切断充电和防过热感应装置)的充电器,以免电池因过充而缩短常规使用的寿命。一般来说,慢速充电较快充更能延长电池的使用寿命。
a.放电的深度是影响电池使用寿命的重要的因素,放电的深度越高,电池的寿命就越短。换句话说,只要降低放电深度,就能大幅延长电池的常规使用的寿命。因此,我们应避免将电池过放至极低的电压。
c.如果设计的电子器材不能完全停止所有电流,若将该器材长时间搁置不用,而不把电池取出, 其残余电流有时会令电池过分消耗, 造成电池过放电。
d.把不同电容量、化学结构或不同充电水平的电池,以及新旧不一的电池混合使用时,亦会令电池放电过多, 甚至会造成反极充电。
如果用电器较长时期内不会再使用,最好将电池取出并放于低温、干燥的地方,如果不这样,即使用电器被关掉,系统仍会使电池有一个低电流输出,这会缩短电池的使用寿命。
根据IEC标准规定,电池应在温度为20℃±5℃,湿度为(65±20)%的条件下储存。一般而言,电池储存温度越高,容量的剩余率越低,反之是相同,冰箱温度在0℃-10℃时储存电池的最好地方,尤其是对一次电池。而二次电池即使储存后损失了容量,但只要重新充放电几次既可恢复。
就理论上讲,电池储存时总有能量损失。电池本身固有的电化学结构决定了电池容量不可避免地要损失,主要是由于自放电造成的。通常自放电大小与正极材料在电解液中的溶解性和它受热后的不稳定性(易自我分解)有关。可充电电池的自放电远比一次电池高。
如果要长期保存电池,尽量放在干燥低温的环境下并让电池剩余电量在 40% 左右最为理想。当然,每个月最好要把电池拿出来用一次,既能保证电池良好的保存状态,又不至于让电量完全流失而损坏电池。
国际上规定的作为电势(位)测量标准的电池。它是由美国电气工程师E.韦斯顿在1892年发明的,故又称韦斯顿电池。
标准电池的正极是硫酸亚汞电极,负极是镉汞齐金属(含有10%或12.5%的镉),电解液是带酸性的饱和硫酸镉水溶液,其实就是饱和的硫酸镉和硫酸亚汞水溶液。
02)电池受高倍率大电流连续过充,导致电池极芯膨胀,正负极非间接接触短路等;
03)电池里面短路或微短路,如:正负极片放置不当造成极片接触短路,或正极片接触等。
为了防止电池过充,需要对充电终点来控制,当电池充满时,会有一些特别的信息可利用来判断充电是不是达到终点,一般有以下六种方法来防止电池被过充:
05)计时控制:通过设置一定的充电时间来控制充电终点,一般设定要充进130%标称容量所需的时间来控制;
04)放电效率较低,如大电流放电时普通电池由于内部物质扩散速度跟不上反应速度,造成电压急剧下降而无法放出电。
过充电是指电池经一定充电过程充满电后,再继续充电的行为,对Ni-MH电池,过充电产生如下反应:
由于在设计时负极容量比正极容量要高,因此正极产生的氧气透过隔膜纸与负极产生的氢气复合,故正常的情况下电池的内压不会有明显升高,但如果充电电流过大,或充电时间过长,产生的氧气来不及被消耗,就会造成内压升高,电池变形、漏液等不良现象。同时,其电性能也会显著降低。
电池放完内部储存的电量,电压达到一定值后,继续放电就会造成过放电,通常根据放电电流来确定放电截止电压,0.2C-2C放电一般设定1.0V/支,3C以上如5C或10C放电设定为0.8V/支。电池过放可能会给电池带来灾难性的后果,特别是大电流过放或反复过放,对电池影响更大,一般而言,过放电会使电池内压升高,正负极活性物质可逆性受到破坏,即使充电也只能部分恢复,容量也会有明显衰减。
电池内的任何部分的固态物质瞬间排出,被推至离电池25cm以上的距离,称为爆炸。预防的一般手段有:
便携式,意思是便于携带也方便使用。便携式电池主要是给手提式、无绳设备提供电能。较大型号的电池(如:4公斤或以上)不属于便携式电池。现今典型的便携式电池约为几百克。
便携式电池的家族包括一次电池和可充电电池(二次电池)。纽扣电池属于它们中特殊的一群。
每一个电池都是一个能量转换器。能将储存的化学能直接转化为电能。对可充电电池而言,这样的一个过程能这样描述:充电过程电能转换为化学能→化学能在放电过程中转化为电能→充电过程中电能转换为化学能,二次电池可以如此循环1000多次。
在不同电化学类型中均有可充电便携式电池,铅酸类型(2V/支)、镍镉类型(1.2V/支)、镍氢类型(1.2V/支)、锂离子电池(3.6V/支),这几种电池的典型特征是相对有恒定的放电电压(放电时有一个电压平台),在放电开始及末尾电压均很快衰减。
不是,因为任何充电器都只对应于一特定充电工艺,只能对应一特定电化学过程,如锂离子、铅酸或Ni-MH电池,它们不仅电压特性不同,而且充电模式也不同。只有特别开发的快速充电器才能使Ni-MH电池得到最适宜的充电效果。慢速充电器可以在急需时使用,但需要更加多的时间,应该格外的注意的是,虽然有些充电器上有合格的标签,但使用其作为不同电化学系统电池的充电器时还是该特别小心,合格的标签只是表明这一装置合乎欧洲电化学标准或其它的国家标准,这种标签并不给出任何它适于何种类型电池的信息,使用低廉的充电器对Ni-MH电池充电不会得到满意的效果,并且还有危险,对于别的类型的电池充电器同样需要注意这一点。
碱锰电池放电时电压的范围在1.5V至0.9V之间,而充电电池放电时恒定电压为1.2V/支,这电压与碱锰电压的平均电压大致相等,因此,用充电电池代替碱锰电池是可行的,反之也一样。
可充电电池的优点是常规使用的寿命长,即使价格比一次电池要贵,但从经常使用的观点来看,则很经济实惠,而且可充电电池的负荷力要比绝大部分一次电池高。但普通二次电池放电电压基本恒定,很难预测放电何时结束,所以在使用的过程中会造成一定的不便。但锂离子电池能给照相机设备提供较长的使用时间,高负荷力,高能量密度,且放电电压的下降随放电的深入而减弱。
普通二次电池的自放电率较高,因此适合大电流放电用如数码相机、玩具、电动工具、应急灯等等,而不适合小电流长时间放电的场合如遥控器、音乐门铃等,也不适合长时间间断使用的地方如手电筒等。目前比较理想的电池是锂电池,几乎拥有电池所有的优点,自放电率极低,唯一的缺点是对充放电要求很严格,这是对寿命的保证。
02)可制成薄型电池:以3.6V,400mAh的容量,其厚度可薄至0.5mm;
05)可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池;
充电器是采用电力电子半导体器件,将电压和频率固定不变的交流电变换为直流电的一种静止变流装置。充电器有很多,如铅酸蓄电池充电器、阀控密封铅酸蓄电池的测试与监测、镍镉电池充电器、镍氢电池充电器、锂离子电池充电器、便携式电子设备锂离子电池充电器、锂离子电池保护电路多功能充电器、电动车蓄电池充电器等。
lithium batteries),激活电池、锌-汞电池、镉-汞电池、锌-空气电池、锌-银电池和固体电解质电池(银-碘电池)等。——二次电池—— 铅酸电池(lead batteries)、镍镉电池(Ni-Cd batteries)、镍氢电池(Ni-MH batteries)、锂离子电池(Li-ion batteries)和钠-硫电池等。
随着照相机、移动电话、无绳电话、笔记本电脑等带图像或声音的多媒体设备在家用电器中占据逐渐重要的位置,与一次电池相比较,二次电池也大量的应用到这些领域中。而二次充电电池将向体积小、重量轻、容量高、智能化的方向发展。
在智能电池中装有一个芯片,不但为设备提供电源,而且能控制其基本功能,这种型号的电池还能显示残余容量、已经循环的次数、温度等,不过目前市场上还没有智能电池出售,将来会占据市场的主要地位——尤其是在便携式摄像机、无绳电话、移动电话以及笔记本电脑中。
纸电池是一种新型电池,其组成部分也包括电极、电解液和隔离膜。具体而言,这种新型的纸电池是由植入了电极和电解液的纤维素纸构成,其中纤维素纸就起到了隔离物的作用。电极分别是加入纤维素中的碳纳米管和覆盖在纤维素制成的薄膜上的金属锂;而电解液就是六氟磷酸锂溶液。这种电池可折叠,厚度只相当于纸张。研究者认为,由于这种纸电池具有诸多的性能,因此将会成为一种新型的能源存储设备。
光电池是一种在光的照射下产生电动势的半导体元件。光电池的种类很多,常用有硒光电池、硅光电池和硫化铊、硫化银光电池等。大多数都用在仪表,自动化遥测和遥控方面。有的光电池可以直接把太阳能转变为电能,这种光电池又叫太阳能电池。
PN结的内建电场使光生载流子分离达到结的两边而产生光电压,连接到外电路则使得到功率输出。太阳能电池的功率与光照强度有关,光照越强,则功率输出越强。太阳能系统易于安装,易于扩充,易于拆卸等优点。同时使用太阳能也很经济实惠,在操作的流程重没有能量耗费。另外此系统耐机械磨损;一个太阳能系统要可靠的太阳能电池以便于接受和储存太阳能。一般太阳能电池有如下优点:
最常见的分类方法是按照电解质的种类,据此,可将燃料电池分为碱性燃料电池,一般以氢氧化钾为电解质;磷酸型燃料电池,以浓磷酸为电解质;质子交换膜燃料电池,以全氟或部分氟化的磺酸型质子交换膜为电解质;熔融碳酸盐型燃料电池,以熔融的锂-钾碳酸盐或锂-钠碳酸盐为电解质;固体氧化物燃料电池,以固体氧化物为氧离子导体,如以氧化钇稳定的氧化锆膜为电解质。有时也按电池温度对电池进行分类,分为低温(工作时候的温度低于100℃) 燃料电池,包括碱性燃料电池和质子交换膜燃料电池;中温燃料电池( 工作时候的温度在100-300℃),包括培根型碱性燃料电池和磷酸型燃料电池;高温燃料电池(工作时候的温度在600-1000℃),包括熔融碳酸盐燃料电池和固体氧化物燃料电池。
在最近一二十年里,美国格外的注意燃料电池的研制工作,日本则在引进美国技术的基础上大力进行技术开发。 燃料电池之所以引起一些发达国家的重视,主要是因为它有以下优点:
01)高效率。由于直接将燃料的化学能转换为电能,中间不经过热能转换,转换效率不受热力学卡诺循环的限制;由于没机械能的转换,可免除物理运动损耗,再加上转换效率不因发电规模大小而变化,故燃料电池具有较高的转换效率;
02)低噪声、低污染。燃料电池在化学能转换为电能的过程中,没有机械运动的部件,只是控制管理系统有一部分小型运动部件,故它是低噪音的。此外,燃料电池还是低污染的能源。以磷酸型燃料电池为例,它排放的硫氧化物及氮化物都低于美国规定的相关标准两个数量级;
03)适应能力强。燃料电池能够正常的使用各种含氢燃料,如甲烷、甲醇、乙醇、沼气、石油气、天然气和合成煤气等,氧化剂则是取之不尽、用之不竭的空气。燃料电池能做成一定功率(如40千瓦)的标准组件,按照用户的需要组装成不同的功率和型式,安装在用户最方便的地方。若需要也可以装成大型电站,与常规供电系统并网使用,这将有利于调节电力负荷;
04)建设周期短,维护简便。燃料电池在形成工业化生产之后,发电装置的各种标准组件,可在工厂进行连续化生产。它运输方便,还能在发电站现场进行组装。有人估算40千瓦磷酸型燃料电池的维护量,仅为同等功率柴油发电机的25%。
米,纳米电池即用纳米材料(如:纳米MnO,LiMn,Ni(OH)等)制作的电池。纳米材料具备特殊的微观结构和物理化学性能(如量子尺寸效应,表面效应,和隧道量子效应等)。目前国内技术成熟的纳米电池是纳米活性碳纤维电池。大多数都用在电动汽车、电动摩托和电动助力车上。该种电池可充电循环1000次,连续使用达10年左右。一次充电只需20分钟左右,平路行程达400km,重量在128kg,已经超越美、日等国的电池汽车水平,它们生产的镍氢电池充电约需6-8小时,平路行程300km。
目前所说的塑料锂离子电池是指采用离子导电的聚合物作为电解质,这种聚合物可以是干态的也可以是胶态的。
充电电池非常适合于需要相比来说较高能源供给的用电设备或要求大电流放电的设备,如便携式单放机、CD播放机、小型收音机、电子游戏机、电动玩具、家用电器、专业照相机、移动电话、无绳电话、笔记本计算机等其它需要较高能量的设备。不常用的设备建议还是不要使用充电电池,因为充电电池自放电较大,但若设备需要大电流放电,则必须用充电电池,一般用户最好按照生产商提供的使用说明书的指导来选择比较适合设备的电池。
03)别的类型电池若符合IEC 60598(2000)(应急灯部分)标准(应急灯部分)的相应安全和性能标准也可使用。
正常使用情况下,常规使用的寿命为2-3年或更长时间,当发生以下情况时,电池需要更换:
重磅 《新能源汽车动力电池包PACK设计课程从入门到精通30讲+免费分享篇》视频-2023年课程安排
全网唯一系统层级的PACK设计教程,从零部件开发到结构设计校核一系列课程,着重关注零部件设计、热管理零部件开发、电气零部件选型等,让你从一个小白从零开始入门学习新能源电池包设计。
50份半价出售全套《新能源电池包PACK设计入门到进阶30讲+免费能分享篇》、《Fluent新能源电池包PACK热管理仿线讲+番外篇》视频课程,并送持续答疑!知道更多课程,加微信号详询:LEVIN_simu1、
动力电池包MAP等效4C充电、热失控热抑制、恒功率AC/PTC滞环控制电路SOC模型设置教程;是目前市场上唯壹一套从PACK模型的简化到热模型建立和后处理评价标准的系统讲解。希望能帮助到大家。
动力电池热管理系统模块设计》、《starccm+电池包热仿真课程》、《储能系统热管理设计与仿真课程》,